Housing Price Predictions (part 2)

In this post, we will use the Ames housing data to compare several models. The models will be trained to predict sale price and performance will be measured by the root mean squared error (rmse).

We will compare a simple linear regression (lm) with glmnet (lasso and elastic-net regularized generalized linear model), decision trees, random forest and xgboost models. Where appropriate, we will also try to improve model performance with hyperparameter tuning. Let’s get to it!

ames_df <- make_ames() %>% 
  janitor::clean_names()  %>% # extracting the data from the AmesHousing package and converting all column names to lower, snake_case
  mutate(sale_price = log10(sale_price))

Splitting and creating k-fold cross-validation data

library(rsample)
set.seed(518)

ames_split <- initial_split(ames_df, prop = 0.8, strata = "sale_price") #strata argument will insure that the prediction variable is equally represented in the training and test sets

ames_train <- training(ames_split)
ames_test <- testing(ames_split)

folds <- vfold_cv(ames_train, v = 10, strata = "sale_price")

Variable importance

Before we delve into building models, let’s consider which features have the most explanatory power based on the random forest model.

#use vip (variable importance package to predict the importance of our expanatory variables)
rand_forest(mode = "regression") %>%
  set_engine("ranger", importance = "impurity") %>%
  fit(sale_price ~ ., 
      data = ames_train) %>%
  vip::vip()

ames_train$overall_cond %>% levels() 
##  [1] "Very_Poor"      "Poor"           "Fair"           "Below_Average" 
##  [5] "Average"        "Above_Average"  "Good"           "Very_Good"     
##  [9] "Excellent"      "Very_Excellent"
rand_forest(mode = "regression") %>%
  set_engine("ranger", importance = "impurity") %>%
  fit(sale_price ~ neighborhood + gr_liv_area + year_built + bldg_type, 
      data = ames_train) %>%
  vip::vip()

# Let's visualize the relationship between sale price and gr_liv_area. 
ggplot(ames_train, aes(x = gr_liv_area, y = sale_price)) + 
  geom_point(alpha = .2) + 
  facet_wrap(~ bldg_type) + 
  geom_smooth(method = lm, formula = y ~ x, se = FALSE, col = "red") + 
  scale_x_log10() + 
  scale_y_log10() + 
  labs(x = "Gross Living Area", y = "Sale Price (USD)")

Data preprocessing and formula specification

The feature engineering steps in this post were adapted from Julia Silge and Max Khun’s tidymodels with R textbook.

The formula specification has the form prediction_variable ~ predictor_variables. In this model, the predictor variables include neighborhood, living area, year built and building type.

ames_rec <- 
  recipe(sale_price ~ overall_cond + gr_liv_area + year_built + bldg_type,
         data = ames_train) %>%
  step_log(gr_liv_area, base = 10) %>% #log transform gr_liv_area
  step_corr(all_numeric(), - all_outcomes()) %>% #remove variables with large correlations
  step_nzv(all_predictors()) %>% #remove variables that are highly sparse and unbalanced
  #step_other(neighborhood, threshold = 0.01) %>% #pool occurring neighborhoods into an "other" category
  step_dummy(all_nominal_predictors()) %>% #converts neighborhoods and building type into a numeric binary model
  step_interact( ~ gr_liv_area:starts_with("bldg_type_")) #will create new columns based on interactions between the specified features

ames_rec %>%  prep() %>% juice() #view the transformed data
## # A tibble: 2,342 x 20
##    gr_liv_area year_built sale_price overall_cond_Poor overall_cond_Fair
##          <dbl>      <int>      <dbl>             <dbl>             <dbl>
##  1        2.95       1961       5.02                 0                 0
##  2        2.99       1971       4.98                 0                 0
##  3        3.04       1971       5.02                 0                 0
##  4        3.03       1977       5.11                 0                 0
##  5        2.92       1975       5.08                 0                 0
##  6        2.96       1979       5.00                 0                 0
##  7        2.88       1984       5.10                 0                 0
##  8        3.01       1920       4.83                 0                 0
##  9        3.28       1978       5.05                 0                 0
## 10        2.95       1967       5.09                 0                 0
## # … with 2,332 more rows, and 15 more variables:
## #   overall_cond_Below_Average <dbl>, overall_cond_Average <dbl>,
## #   overall_cond_Above_Average <dbl>, overall_cond_Good <dbl>,
## #   overall_cond_Very_Good <dbl>, overall_cond_Excellent <dbl>,
## #   overall_cond_Very_Excellent <dbl>, bldg_type_TwoFmCon <dbl>,
## #   bldg_type_Duplex <dbl>, bldg_type_Twnhs <dbl>, bldg_type_TwnhsE <dbl>,
## #   gr_liv_area_x_bldg_type_TwoFmCon <dbl>,
## #   gr_liv_area_x_bldg_type_Duplex <dbl>, gr_liv_area_x_bldg_type_Twnhs <dbl>,
## #   gr_liv_area_x_bldg_type_TwnhsE <dbl>

Model evaluation

We expect our model to be better than random chance but how do we know? We can generate the value of a dummy (random chance) model by calculating the standard deviation of sale price.

sd(ames_train$sale_price)
## [1] 0.1787969
# Random chance value: 0.1787969

Model 1: linear model

set.seed(212)

ames_lm <- linear_reg() %>% 
  set_engine("lm")

ames_wkflow <- workflow() %>% 
  add_model(ames_lm) %>% 
  add_recipe(ames_rec)

ames_model_train <- ames_wkflow %>% 
  fit_resamples(resamples = folds,
                metrics = metric_set(rmse))

# best_lm <- select_best(ames_model_train)
# 
# final_wkflow <- finalize_workflow(ames_wkflow, best_lm)
# 
# final_lm_res <- last_fit(final_wkflow, ames_split)
# 
# final_lm_res %>%  collect_metrics() # rmse: 0.07682275


ames_model_train %>% 
  collect_metrics(summarize = F) %>% 
  arrange(.estimate) %>% 
  filter(.metric == "rmse") %>% 
  select(rmse = .estimate) %>% 
  head(1)
## # A tibble: 1 x 1
##     rmse
##    <dbl>
## 1 0.0776
# mean rmse for linear model: 0.07974068 

Model 2: Glmnet

set.seed(212)

ames_glmnet <- linear_reg(penalty = tune(), 
                          mixture = tune()) %>% 
  set_engine("glmnet") %>% 
  set_mode("regression")

ames_glmnet_wkflow <- workflow() %>% 
  add_model(ames_glmnet) %>% 
  add_recipe(ames_rec)

glmnet_grid <- grid_random(parameters(ames_glmnet),
                           size = 7)

glmnet_tunegrid <- ames_glmnet_wkflow %>%
  tune_grid(resamples = folds,
            grid = glmnet_grid,
            metrics = metric_set(rmse),
            control = control_grid(save_pred = TRUE))

glmnet_tunegrid %>% collect_metrics()
## # A tibble: 7 x 8
##    penalty mixture .metric .estimator   mean     n std_err .config             
##      <dbl>   <dbl> <chr>   <chr>       <dbl> <int>   <dbl> <chr>               
## 1 8.45e- 2   0.295 rmse    standard   0.111     10 0.00223 Preprocessor1_Model1
## 2 2.81e- 2   0.403 rmse    standard   0.0937    10 0.00207 Preprocessor1_Model2
## 3 3.22e- 3   0.452 rmse    standard   0.0846    10 0.00166 Preprocessor1_Model3
## 4 1.18e-10   0.486 rmse    standard   0.0831    10 0.00169 Preprocessor1_Model4
## 5 5.89e- 9   0.583 rmse    standard   0.0831    10 0.00169 Preprocessor1_Model5
## 6 5.34e-10   0.858 rmse    standard   0.0831    10 0.00169 Preprocessor1_Model6
## 7 1.13e- 6   0.927 rmse    standard   0.0831    10 0.00169 Preprocessor1_Model7
autoplot(glmnet_tunegrid)

best_rmse <- select_best(glmnet_tunegrid)

final_glmnet <- finalize_workflow(ames_glmnet_wkflow, best_rmse)

final_glmnet %>% 
  fit(data = ames_train) %>% 
  pull_workflow_fit() %>% 
  vip::vip(geom = "point")

final_glmnet_res <- last_fit(final_glmnet, ames_split)

final_glmnet_res %>% 
  collect_metrics() # rmse: .0769
## # A tibble: 2 x 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard      0.0822 Preprocessor1_Model1
## 2 rsq     standard      0.769  Preprocessor1_Model1

Model 3: Decision Tree

ames_decision_tree <- decision_tree() %>% 
  set_engine("rpart") %>% 
  set_mode("regression")

decision_tree_wkflow <- workflow() %>% 
  add_model(ames_decision_tree) %>% 
  add_recipe(ames_rec)

ames_decision_train <- decision_tree_wkflow %>% 
  fit_resamples(resamples = folds,
                metrics = metric_set(rmse))

show_best(ames_decision_train)
## # A tibble: 1 x 6
##   .metric .estimator  mean     n std_err .config             
##   <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
## 1 rmse    standard   0.107    10 0.00299 Preprocessor1_Model1
ames_decision_train %>% 
  collect_metrics()
## # A tibble: 1 x 6
##   .metric .estimator  mean     n std_err .config             
##   <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
## 1 rmse    standard   0.107    10 0.00299 Preprocessor1_Model1
best_dec_tree <- select_best(ames_decision_train)

final_dec_tree <- finalize_workflow(decision_tree_wkflow, best_dec_tree)

final_dec_results <- last_fit(final_dec_tree, ames_split)

final_dec_results %>% collect_metrics() # rmse: .09885
## # A tibble: 2 x 4
##   .metric .estimator .estimate .config             
##   <chr>   <chr>          <dbl> <chr>               
## 1 rmse    standard       0.100 Preprocessor1_Model1
## 2 rsq     standard       0.656 Preprocessor1_Model1
# mean rmse = 0.1064535

Model 4: Random Forest

ames_rand_forest <- rand_forest() %>% 
  set_engine("ranger") %>% 
  set_mode("regression")

rf_wkflow <- workflow() %>% 
  add_model(ames_rand_forest) %>% 
  add_recipe(ames_rec)

ames_rf_train <- rf_wkflow %>% 
  fit_resamples(resamples = folds,
                metrics = metric_set(rmse))

show_best(ames_rf_train) # rmse = .0825
## # A tibble: 1 x 6
##   .metric .estimator   mean     n std_err .config             
##   <chr>   <chr>       <dbl> <int>   <dbl> <chr>               
## 1 rmse    standard   0.0880    10 0.00214 Preprocessor1_Model1
ames_rf_train %>% 
  collect_metrics()
## # A tibble: 1 x 6
##   .metric .estimator   mean     n std_err .config             
##   <chr>   <chr>       <dbl> <int>   <dbl> <chr>               
## 1 rmse    standard   0.0880    10 0.00214 Preprocessor1_Model1
# mean rmse = .0823

Random Forest with tuning

set.seed(222)

ames_rand_forest_tune <- rand_forest(
  trees = 500,
  mtry = tune(),
  min_n = tune()) %>% 
  set_engine("ranger") %>% 
  set_mode("regression")

rf_wkflow <- workflow() %>% 
  add_model(ames_rand_forest_tune) %>% 
  add_recipe(ames_rec)

# hypercube_grid <- grid_latin_hypercube(
#   min_n(),
#   finalize(mtry(), ames_train)
# )


rf_tunegrid <- rf_wkflow %>%
  tune_grid(resamples = folds,
            #grid = hypercube_grid,
            metrics = metric_set(rmse),
            control = control_grid(save_pred = TRUE))


rf_tunegrid %>% 
  collect_metrics() 
## # A tibble: 10 x 8
##     mtry min_n .metric .estimator   mean     n std_err .config              
##    <int> <int> <chr>   <chr>       <dbl> <int>   <dbl> <chr>                
##  1    14    32 rmse    standard   0.0799    10 0.00222 Preprocessor1_Model01
##  2     9    10 rmse    standard   0.0779    10 0.00211 Preprocessor1_Model02
##  3     2    31 rmse    standard   0.116     10 0.00208 Preprocessor1_Model03
##  4    13    37 rmse    standard   0.0799    10 0.00223 Preprocessor1_Model04
##  5     5    16 rmse    standard   0.0829    10 0.00214 Preprocessor1_Model05
##  6     7    28 rmse    standard   0.0796    10 0.00222 Preprocessor1_Model06
##  7     5    24 rmse    standard   0.0834    10 0.00211 Preprocessor1_Model07
##  8    11     8 rmse    standard   0.0788    10 0.00219 Preprocessor1_Model08
##  9    18    20 rmse    standard   0.0809    10 0.00209 Preprocessor1_Model09
## 10    17     4 rmse    standard   0.0820    10 0.00208 Preprocessor1_Model10
rf_tunegrid %>% 
  collect_predictions()
## # A tibble: 23,420 x 7
##    id     .pred  .row  mtry min_n sale_price .config              
##    <chr>  <dbl> <int> <int> <int>      <dbl> <chr>                
##  1 Fold01  5.09     1    14    32       5.02 Preprocessor1_Model01
##  2 Fold01  5.02    22    14    32       5.03 Preprocessor1_Model01
##  3 Fold01  5.09    48    14    32       5.10 Preprocessor1_Model01
##  4 Fold01  5.08    60    14    32       4.95 Preprocessor1_Model01
##  5 Fold01  5.08    63    14    32       5.02 Preprocessor1_Model01
##  6 Fold01  4.79    69    14    32       4.91 Preprocessor1_Model01
##  7 Fold01  4.99    70    14    32       5.04 Preprocessor1_Model01
##  8 Fold01  5.09    85    14    32       5.10 Preprocessor1_Model01
##  9 Fold01  5.00    89    14    32       4.99 Preprocessor1_Model01
## 10 Fold01  5.08    91    14    32       5.08 Preprocessor1_Model01
## # … with 23,410 more rows
#mean rmse: 0.07816951

Model 5: Xgboost

ames_xgboost <- boost_tree() %>% 
  set_engine("xgboost") %>% 
  set_mode("regression")

train_xgboost <- workflow() %>% 
  add_model(ames_xgboost) %>% 
  add_recipe(ames_rec) %>% 
  fit_resamples(resamples = folds,
                metrics = metric_set(rmse))

train_xgboost %>% 
  collect_metrics()
## # A tibble: 1 x 6
##   .metric .estimator   mean     n std_err .config             
##   <chr>   <chr>       <dbl> <int>   <dbl> <chr>               
## 1 rmse    standard   0.0846    10 0.00191 Preprocessor1_Model1
# rmse: 0.08357835

Xgboost with tuning

set.seed(123)

 # Create the specification with placeholders
boost_spec <- boost_tree(
    trees = 500,
    learn_rate = tune(),
    tree_depth = tune(),
    sample_size = tune()) %>%
  set_mode("regression") %>%
  set_engine("xgboost")

boost_wkflow <- workflow() %>% 
  add_recipe(ames_rec) %>% 
  add_model(boost_spec)

# boost_grid <- grid_random(parameters(boost_spec),
#                           size = 10)

ames_tune <- boost_wkflow %>%  
  tune_grid(resamples = folds,
            #grid = boost_grid,
            metrics = metric_set(rmse))

ames_tune %>% 
  collect_metrics()
## # A tibble: 10 x 9
##    tree_depth learn_rate sample_size .metric .estimator   mean     n std_err
##         <int>      <dbl>       <dbl> <chr>   <chr>       <dbl> <int>   <dbl>
##  1          6   2.05e-10       0.765 rmse    standard   4.72      10 0.00185
##  2         11   1.25e- 8       0.292 rmse    standard   4.72      10 0.00185
##  3          8   6.54e- 3       0.893 rmse    standard   0.199     10 0.00166
##  4          9   1.13e- 5       0.926 rmse    standard   4.70      10 0.00185
##  5         15   3.00e- 7       0.186 rmse    standard   4.72      10 0.00185
##  6          2   1.46e- 4       0.517 rmse    standard   4.39      10 0.00186
##  7         12   1.88e- 6       0.641 rmse    standard   4.72      10 0.00185
##  8          5   2.88e- 9       0.217 rmse    standard   4.72      10 0.00185
##  9          7   3.69e- 2       0.603 rmse    standard   0.0799    10 0.00184
## 10          3   3.03e- 4       0.424 rmse    standard   4.06      10 0.00188
## # … with 1 more variable: .config <chr>
show_best(ames_tune)
## # A tibble: 5 x 9
##   tree_depth learn_rate sample_size .metric .estimator   mean     n std_err
##        <int>      <dbl>       <dbl> <chr>   <chr>       <dbl> <int>   <dbl>
## 1          7  0.0369          0.603 rmse    standard   0.0799    10 0.00184
## 2          8  0.00654         0.893 rmse    standard   0.199     10 0.00166
## 3          3  0.000303        0.424 rmse    standard   4.06      10 0.00188
## 4          2  0.000146        0.517 rmse    standard   4.39      10 0.00186
## 5          9  0.0000113       0.926 rmse    standard   4.70      10 0.00185
## # … with 1 more variable: .config <chr>
autoplot(ames_tune)

boost_tune_result <- show_best(ames_tune) %>%
  select(.metric, mean) %>% 
  arrange(mean) %>% 
  filter(row_number() == 1)

Results

In this analysis, we compared various regression models and used the tune package to optimize hyperparameter values. The collect_metrics() function allows us to see the possible hyperparameter combinations and the resulting rmse. Let’s compare the rmse values to rank model performance.

library(kableExtra)

model <- c('linear', 'glmnet', 'decision tree', 'random forest', 'random forest tuned', 'xgboost', 'xgboost tuned')

# Function to extract best  rmse from each model
extract_rmse <- function(tbl) { 
  tbl %>% 
  collect_metrics(summarize = F) %>% 
  arrange(.estimate) %>% 
  dplyr::filter(.metric == "rmse") %>% 
  dplyr::select(rmse = .estimate) %>% 
  head(1)
}

results = list(ames_model_train, glmnet_tunegrid, ames_decision_train, ames_rf_train, rf_tunegrid, train_xgboost, ames_tune)

model_results <- map_df(results, extract_rmse) %>%
  mutate(Model = model) %>% 
  dplyr::select(Model, rmse) %>% 
  arrange(rmse)

kable(model_results, caption = "Summary of model performance")
Table 1: Summary of model performance
Modelrmse
random forest tuned0.0708296
xgboost tuned0.0714156
xgboost0.0749300
glmnet0.0770956
linear0.0775731
random forest0.0814132
decision tree0.0937154
Gabriel Mednick, PhD
Gabriel Mednick, PhD
Deepen Analytics founder and aspiring R Ninja

Data scientist, biochemist, computational biologist, educator and nature lover.